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Summary

This report is a documentation of the results on flowfield surveys for the GE/ARL mixer-ejector
nozzle carried out in an open jet facility at NASA Glenn Research Center. The results reported
are for cold (unheated) flow without any surrounding co-flowing stream. Distributions of
streamwise vorticity as well as turbulent stresses, obtained by hot -wire anemometry, are
presented for a low subsonic condition. Pitot probe survey results are presented for nozzle
pressure ratios up to 3.5. Flowfields both inside and outside of the ejector are considered. Inside
the ejector, the mean velocity distribution exhibits a cellular pattern on the cross sectional plane,
originating from the flow through the primary and secondary chutes. With increasing downstream
distance an interchange of low velocity regions with adjacent high velocity regions takes place
due to the action of the streamwise vortices. At the ejector exit, the velocity distribution is
nonuniform at low and high pressure ratios but reasonably uniform at intermediate pressure
ratios. The effects of two chevron configurations and a tab configuration on the evolution of the
downstream jet are also studied. Compared to the baseline case, minor but noticeable effects are
observed on the flowfield.

Introduction

In order to achieve jet noise reduction goals for the High Speed Civil Transport (HSCT) aircraft,
currently under development, various designs of a mixer-ejector nozzle have been under
consideration. Its basic feature includes a two dimensional primary nozzle with multiple chutes
which is surrounded by an ejector of rectangular cross section. An earlier model of the nozzle was
tested extensively in the Aerodynamic Research Laboratory (ARL) of General Electric Aircraft
Engines Company in Cincinnati. Laser doppler velocimeter data for the flowfield and data for the
radiated noise field were obtained; these results were summarized in an earlier report (Majjigi,
R.K., Brausch, J.F., Askew, J.W., Shin, H., Mengle, V., and Balan, C., “Low Noise Exhaust
Nozzle Technology Development”, Report on Grant NAS3-25415, April, 1996, not published).
While the noise reduction goal continues to be pursued through testing with later generations of
the nozzle, the earlier model was brought to Glenn to carry out relatively fundamental measure-
ments in an effort to further understand the flow mechanisms. The immediate goal in the Glenn
study has been to obtain complementary, further details of the flowfield with and without noise
suppression devices such as chevrons and tabs. The overall goal has been to look for clues that
could lead to improved mixing within the ejector and further spreading of the jet downstream
which are thought to hold keys for the desired noise suppression. So far measurements have been
conducted with a fixed geometry of the chutes and the ejector, with and without the chevrons and
tabs, and the purpose of this report is to document those results.
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The specific objectives in the measurements were as follows. (A) For the baseline configuration
perform hot-wire surveys for an incompressible flow case inside and outside of the ejector (mean
velocity, vorticity and turbulent stresses.). (B) For the baseline configuration perform Pitot probe
surveys at various nozzle pressure ratios inside and outside of the ejector (flow uniformity,
pumping, jet spreading, etc.). (C) Study effects of “chevrons” and “tabs” on the downstream
evolution of the jet.

The main results are presented with composite plots and perspective views of the velocity and
vorticity distributions, in figures V.1 to V.15, without any details of the quantitative information.
A discussion of each of these figures is listed in the Results section. Details of the data are
included in the appendix as contour plots. With the help of the nomenclature section and the
annotations on the margin of the appendix figures one should be able to obtain all pertinent
details. For cross reference, the corresponding appendix figure numbers are listed in parentheses
on each of figures V.1 to V.15.

Nomenclature
D Equivalent diameter of ejector exit (4.07 in.)
m Mass flow rate (m; from flow meter, other data from Pitot probe survey)
M Mach number
NPR Nozzle pressure ratio, Py/Px
P Static pressure
Pr Total pressure
u,v,w Streamwise and transverse velocity components (upper case for mean values)
X,¥,Z Coordinates with origin at ejector exit center (z along long axis of the ejector
cross section)
Oy Streamwise vorticity (0V/0z — OW/0y)
Subscripts
A Ambient conditions
I Conditions at primary nozzle exit
J Conditions at ejector exit
0 Plenum chamber conditions
MAX Maximum value at a given X
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Measurement Conditions and Procedure

The measurements were conducted for the nozzle configuration with suppressor area ratio (SAR)
of 2.8 and mixing area ratio (MAR) of 1.0. The “long ejector” was used together with the “flush
inlet.” MAR = 1 implied that the cross sectional area of the ejector (5.005 in. x 2.600 in.) was
constant throughout its length. The long ejector had a length of 9.705 in. downstream of the
primary nozzle exit. SAR denoted the ratio of the ejector area to the primary nozzle exit area
which was 4.649 in.”. The hot-wire data were obtained at NPR = 1.07 (Po = 1 psig, M; = 0.32).
The Pitot probe data were obtained covering an NPR range of 1 to 3.5. The effect of chevrons and
tabs were studied mostly at NPR = 2.5. Standard measurement techniques were employed with
computer controlled probe traversing and data acquisition. For details of the Pitot probe measure-
ments reference 1 may be consulted, while details of the hot-wire measurements are discussed in
reference 2.

The Mach number values in appendix figures B1 to B22 are approximate especially far inside the
ejector. Only total pressure was measured and the Mach number was calculated assuming static
pressure to be equal to that outside in the ambient. Furthermore, Pitot probe errors were large
just downstream of the primary nozzle due to flow angularity. The errors were also large on the
periphery of the downstream jet (figs. C1 to C16) where the velocity was small and dominated
by the entrainment component. (No significance should be attached to the small “negative” Mach
numbers in those regions which, for ease of analysis, were calculated simply by using the
absolute values of the measured negative total pressures.) The hot-wire measurements similarly
had errors in the same regions due to flow angularity. Further discussion of the errors can be
found in references 1 and 2.

Figure P.1 shows an end view of the nozzle mounted in the jet facility. The lower half of the
primary nozzle chutes can be seen. The upper and lower chutes were aligned. Figure P.2 shows

a close up view of the nozzle mounted in the jet facility. Here, the ejector end is fitted with the
large chevrons. Figure P.3 shows another view of the facility where the ejector end is fitted with
the tabs. A three element Pitot probe rake mounted on the probe traversing unit can be seen in the
foreground. (Chevrons and tabs are described further with figures V.11(A) and (B).) Figure P.4,
reproduced from reference 3, shows schematic views of the nozzle and the chutes.

Results

Figure V.1.—Longitudinal mean velocity distributions at five x-locations inside the ejector;
M; = 0.32. The box outlines the ejector, with the primary nozzle exit located on the left end.

Figure V.2.—Streamwise vorticity distribution within the ejector shown by two iso-surfaces. The
data are based on measurements at the five stations of figure V.1. The outer vortex strands
appear broken because measurement range was smaller farther inside.

Figure V.3.—Sense of the streamwise vortex pairs originating from the chutes, as inferred from
the o, data.

Figure V.4.—The data of figure V.1 shown as contour plots at four stations. The switchover of
the high-low-high velocity regions to low-high-low velocity regions from x/D = -2 to
x/D = —1 is clearly shown. This occurs because the streamwise vortex pairs continually
transport fluid in the lateral direction.
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Figure V.5.—Downstream evolution of the jet shown by data at x/D =0, 1, 2, 4, and 8; M; = 0.32.

Figure V.6.—Streamwise vorticity distribution corresponding to the measurement range of
figure V.5. Note that the iso-surface levels are ten times lower than those in figure V.2.

Figure V.7.—Mach number distributions within the ejector obtained from Pitot probe surveys.
(A), (B) and (C) are for indicated values of NPR and M. Note that the distribution at the exit
plane is nonuniform and similar at M; = 0.34 and 1.21 but more uniform at M; = 0.70.

Figure V.8.—The switchover of the high and low velocity regions, as in figure V.4, is shown by
total pressure variations measured downstream of a primary and an adjacent secondary chute.
Data are shown for 11 values of NPR in (a) and (b). The pair of traces for each NPR are
normalized by Pr o which is the measured total pressure at x =-9.5in.,y = 0.8 in., z= 0.
Successive pairs are staggered by one major ordinate division. Switchover occurs at all values
of NPR, more than once in certain cases. No systematic trend in the first switchover location
can be discerned.

Figure V.9.—Mach number distributions at the exit plane of the ejector obtained from Pitot probe
surveys. The cellular patterns occur at low and high values of NPR, but the flow is more
uniform at NPR = 1.36 (M; = 0.68).

Figure V.10.—Ratio of mass flow rate at ejector exit, obtained by integration of data as in figure
V.9, to the mass flow rate through primary nozzle measured by a flow meter.

Figure V.11.—Sketch of the chevrons and tabs. The large chevrons in (a) are approximately
similar in geometry as used with a larger model of the nozzle in Cell 41 of GEAE, Cincinnati.
Chevrons are mounted on the ejector outer surface (see fig. P.2). They are bent by about 10°
so that the surface exposed to the flow is parallel to the streamwise direction. Tabs are of
same size as the small chevrons. Ten tabs are used (see fig. P.3), each located downstream of
the secondary flow chutes. This configuration was chosen, on the basis of the measured
streamwise vorticity distribution (fig. V.3), in order to augment the strength of the vortices.

Figure V.12.—Downstream evolution of the jet based on Pitot probe surveys at M; = 1.23
(NPR = 2.5) for the chevron and the tab cases. No dramatic difference in jet spreading is
observed. However, noticeable changes in the jet cross sectional shape can be observed upon
close inspection.

Figure V.13.—Maximum Mach number and mass flow rate variation with streamwise distance,
obtained from data of figure V.12. The solid symbols are for a free rectangular jet with aspect
ratio of 3:1 (ref. 2). Note that the comparison of the free rectangular jet data in figure V.13(b)
should be interpreted with caution, as D is equivalent diameter of the nozzle in that case but it
is equivalent diameter of the ejector in the present case.

Figure V.14.—Jet cross sectional shape at x/D =4, at NPR = 2.5 and 3.5, for: (a) baseline, (b) tab,
and (c) large chevron cases. Flutter at NPR = 3.5 did not allow measurement for the small
chevron case. For the large chevron case in (¢) at NPR = 3.5, probe broke off after half the
field was surveyed; the full distribution is shown by assuming symmetry about y = 0 plane.

Figure V.15.—Flow unsteadiness and flutter of chevrons at NPR = 3.5 are shown by these noise
spectra data measured by a microphone. With the chevrons (large and small) a rather violent
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unsteadiness ensued when NPR was increased to about 3.5. It did not occur for the baseline
and the tab cases. The frequency was about 400 Hz but changed for various set ups. After a
sustained run, the chevrons would develop cracks (some actually fractured away) at the base
along the lip of the ejector. It appeared that the unsteadiness was due to structural resonance
(flutter) of the chevron pieces attached to the long edges of the ejector (fig. V.11(a)),
probably instigated by unsteady shock motion.
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Figure P.1.—End view of the nozzle mounted in the jet facility. The lower half of the primary nozzle
chutes can be seen.
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Figure P.2 .—Close up view of the nozzle mounted in the jet facility. Here, the ejector end is fitted with the
large chevrons.
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Figure P.3.—Another view of the facility where the ejector end is fitted with the tabs. A three element Pitot
probe rake mounted on the probe traversing unit can be seen in the foreground.
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Figure P.4.—Schematic views of the nozzle and the chutes (from reference 3).
(a) Schematic of nozzle. (b) Perspective view of chutes.
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Figure V.1.—Mean velocity inside injector; x/D = -2, -1.5, -1, -0.5 and 0 (appendix figs. A1-A4).

Figure V.2.—Streamwise vorticity inside injector, w,D/U, = £0.8 iso-surfaces (appendix figs. A5-A8).
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Figure V.3.—Schematic of streamwise vorticity from the chutes.
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Figure V.4.—Mean velocity inside ejector. Switching of high and low velocity regions
(appendix figs. A1-A4, turbulent stresses in figs. A9-A28).
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Figure V.5.—Mean velocity downstream of ejector. Blue iso-surface: U/U; = 0.15 (appendix figs. A29-A32).
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Figure V.6.—Streamwise vorticity downstream of ejector, o,D/U, = £0.08 iso-surfaces (appendix figs. A33-A36,
turbulent stresses in figs. A37-A56).
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(b)

Figure V.7.—Mach number, M/Mpax. (@) NPR = 1.08 (M, = 0.34) (appendix figs. B1-B4). (b) NPR = 1.39
(M, = 0.70) (appendix figs. B5-B8). (c) NPR = 2.46 (M, = 1.21) (appendix figs. B9-B12).
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Figure V.7.—Concluded. (c) NPR = 2.46 (M, = 1.21) (appendix figs. B9-B12).
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Figure V.12.—Mach number distribution, NPR = 2.5 (M, = 1.23) (appendix figs. C1-C16).
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Appendix

The data are presented as contour plots on the cross sectional (y, z) plane for a given x/D location
indicated in the margin. Figures A1 to A56 show hot-wire data for the baseline nozzle (without
tabs or chevrons). Figures B1 to B22 show Mach number contours inside and at the exit of the
gjector, for various NPR. Figures C1 to C16 show Mach number contours for the baseline,
chevron and tab cases in the downstream jet at NPR ~ 2.5. Figures D1 to D14 show hot-wire
data for the chevron and tab cases. Other notations used in the margin are

Min

Max
c_mn
c_mx
incr
Omega x
uv/Uj**2
uw/Uj**2

mi

Dy, Dz

Minimum value in the field
Maximum value in the field
Minimum contour level
Maximum contour level
Contour interval

x

uv/ U3
uw /U

my, Ibs/sec

Half velocity diameters
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